Lesson Plan Format		
Name of the Assistant Professor: Manu Kumar Bhandoria		
	e. 2nd Sem Subject: CHEMISTRY Paper: Physical Chemistry	
	Ch1- Chemical Kinetics	
Week 1	Rate of reaction and expressing and measuring the rate of reaction	
	Factors affecting the rate of reaction and conc. dependence of the reaction	
	rates	
Week 2	Zero order and first order reactions and their integrated rate expression	
	Half life period, Pseudofirst order reactions and kinetics of second order	
Week 3	Second and third order reactions and their integrated rate expressions with	
	Mechanism of reaction rate and Rate law	
Week 4	Molecularity and order of reaction	
	Methods for the determination of rate of reaction	
	Ch 2- Theory of Chemical Kinetics	
Week 5	Effect of temp. on the rate of reaction-Arrhenius equation	
	Theories of reaction rates, Collision theory for unimolecular reaction	
Week 6	Transition state theory and effect of pressure on reaction rate	
	Ch3-Electrochemistry	
Week 7	*L-S coupling	
	* Correlation of L and S values	
Week 8	*Orbital contribution to magnetic moments	
	*Application of magnetic moment data for 3d metal complexes.	
	Ch4- Electron Spectra of Transition Metal Complexes	
Week 9	*Types of electronic transitions	
	*Selection rules for d-d transitions	
Week 10	*Spectroscopic ground states *Spectrochemical series	
	*Orgel-energy level diagram for d1 and d9 states discussion of the	
	electronic spectrum of [Ti(H2O)6]+ complex ion.	
Subject:	Chemistry	
	Ch1- Quantam Mechanics-I	
Week 11	*Black Body radiation *Plank's radiation law	
	*Photoelectric effect *Heat capacity of solids	
	*Compton effect *wave function and its significance of Postulates	
	of quantum mechanics	
Week 12	*Quantum mechanical operator *Commutations relations	
	*Hamiltonial operator *Hermitian operator	
	*average value of square of Hermitian as a postive quantity	
	*Role of operators in quantum mechanics	
	* To show quantum mechanically that position and momentum	
Week 13	cannot predicated simultaneously	

	*Determination of vivous function analysis of a nationals in
	*Determination of wave function energy of a patric le in
	one dimensional box
Week 14	*Pictorial representation and its significance
	Ch2- Physical Propertise and Molecular Structure
	*Optical activity *Polarization- (clausius - Mossotti equation)
	*Orientation of dipoles in an electric field, dipole moment,
	included dipole moment
	*measurement of dipole moment - temperature method and
Week 15	refractivity method *dipole moment and structure of molecules.
	*Magnetic permeability *Magnetic susceptibility and its
	determination.
Week 16	*Application of magnetic susceptibility
	*Magnetic properties - paramagnetism, diamagnetism and
	ferromagnetics.
Week 17	Revision of difficult concepts of inorganic chemistry
Week 18	Revision of difficult concepts of inorganic chemistry
Week 19	Revision of difficult concepts of physical chemistry
Week 20	Revision of difficult concepts of physical chemistry